آخرین اخبار

خانه / مقالات / حفاظت مولفه منفی ژنراتور

حفاظت مولفه منفی ژنراتور

یادآوری مطالب تئوریک پیشنیاز ورود به بحث:اگر ژنراتور با بار نامتفاوتی مواجه شود، جریانهای بار نامتقارن را در ژنراتور میتوان به مولفه‌های مثبت، منفی و صفر تجزیه کرد. مجموعه مولفه‌های متعادل به شرح زیرند:

الف) مولفه‌های ترتیب مثبت: شامل سه بردار با دامنه یکسان و اختلاف فاز ۱۲۰ درجه و دارای همان چرخش فاز سیستم اصلی (به عنوان مثال توالی فاز مثبت abc) و مشابه جریان بار متعادل ایجاد میدانی با سرعت سنکرون و در جهت دوران روتور می‌کند.

ب) مولفه‌های ترتیب منفی: شامل سه بردار با دامنه‌های یکسان و اختلاف فاز ۱۲۰ درجه و با چرخش‌های فازی مخالف با مولفه‌های ترتیب مثبت (به عنوان مثال توالی فاز منفی abc) ایجاد میدانی با سرعت سنکرون ولی در جهت مخالف با دوران روتور کرده و لذا جریان‌هایی با دو برابر فرکانس سیستم را در روتور القاء می‌کند.

ج) مولفه‌های ترتیب صفر: شامل سه بردار هم دامنه بدون اختلاف فاز بین یکدیگر، که این مولفه صفر جریان هیچگونه عکس‌العمل آرمیچری را ایجاد نمی‌کند.
خطاهای سیستم اغلب از نوع نامتقارن است و از آنجایی که این خطاها باعث عبور جریان نامتقارن در سیستم می‌شوند، روش مولفه‌های نامتقارن برای محاسبات جریان و ولتاژ نقاط مختلف سیستم در خلال خطا، بسیار مفید است.
مولفه‌های صفر، مثبت و منفی جریان با معادلات زیر بیان می‌شوند:
عدد a نشانگر اپراتوری است که با اعمال آن به هر بردار با حفظ دامنه به اندازه ۱۲۰ درجه در خلاف جهت عقربه‌های ساعت دوران کند این اپراتور عبارت است از عدد۱ با زاویه ۱۲۰ درجه که به صورت مختلط عبارت است از:
اگر این اپراتور دو بار متوالی به یک بردار اعمال شود آنرا به اندازه ۲۴۰ درجه در خلاف جهت عقربه‌های ساعت گردش خواهد داد.
در انتهای بحث مقدمه به عوامل ایجاد جریان‌های نامتقارن در شبکه قدرت به شرح زیر، پرداخته می‌شود:
۱- اتصال کوتاه نامتقارن (در خطوط انتقال طویل، دامنه جریان مولفه منفی در این حالت بیشترین مقدار است).
۲- هادیهای باز در شبکه (عملکرد غلط یکی یا بیشتر از قطبهای کلید قدرت به‌هنگام کلید‌زنی و یا قطع یکی از فازها، مصداق این مورداند)
۳- شبکه قدرت نامتقارن (عدم ترانسپوزه بودن خطوط انتقال نیرو)
۴- بارهای نامتعادل

صدمات ناشی از میدان مولفه‌ منفی جریان (حاصل از عدم تقارن بار) بر ژنراتور:
در صورتی که بار الکتریکی تقارن خود را از دست بدهد، جریان ژنراتور به سه مولفه مثبت، منفی و صفر قابل تجزیه است. اثر مولفه مثبت همانند بار متعادل است و مساله‌ای بوجود نمی‌آورد. مولفه صفر نیز میدان گردان پدید نمی‌آورد. مولفه منفی جریان میدانی در خلاف جهت گردش روتور پدید می‌آورد این میدان نسبت به روتور با دو برابر سرعت سنکرون گردش می‌کند و به همین جهت جریان‌هایی با دو برابر فرکانس سیستم در سطح روتور، حلقه انتهایی نگهدارنده روتور، گوه‌ها و شیار روتور در درجات کمتر در سیم‌پیچ‌های میدان (روتور) القاء می‌کند و باعث تلفات اضافی در روتور می‌شود. تلفات اضافی ناشی از جریان مولفه منفی استاتور، ابتدا در سطح روتور نمایان می‌شود که باعث برافروخته شدن سطح روتور و افزایش شدید درجه حرارت هسته روتور و خرابی ایزولاسیون سیم‌پیچی روتور در یک زمان بسیار کوتاه می‌شود، سپس در گوه‌های شیار تاثیر گذاشته که اگر مقدار آن زیاد باشد این گوه‌ها را از جای خود کنده و در طول شیار در جهت محوری حرکت داده تا جایی که به حلقه‌های نگهدارنده انتهایی برخورد کرده و باعث خرد شدن آنها شوند (لازم به ذکر است که حلقه‌های نگهدارنده مذکور دارای قیمت بالا و بشکل ارزی تامین می‌شود).
جریان‌های مولفه منفی در دو دسته کلی زیر تقسیم می‌توان کرد:
الف) جریان نامتقارن کوتاه مدت
ب) جریان نامتقارن بلندمدت
جریان نامتقارن کوتاه مدت نظیر اتصال کوتاه یک فاز به زمین است که بعد از مدت کوتاهی ممکن است قطع شود.
جریان نامتقارن بلند مدت نظیر بارهای نامتقارن هستند که ممکن است برای مدت طولانی ادامه داشته باشد.
این دو پدیده باعث افزایش درجه حرارت و گشتاور نوسانی ضربه‌ای در محور روتور و هسته استاتور می‌شوند که اثرات حرارتی پدیده کوتاه‌مدت را در طراحی ژنراتورها به عنوان مبنا در قدرت مشخصه مواد و در شدت تلفات قسمت‌های محیطی روتور قرار می‌دهند.

تحلیل رفتار ژنراتور سنکرون در قبال مولفه منفی جریان:
توزیع جریان مولفه منفی در سطح روتور همانند توزیع جریان در روتور موتورهای قفس سنجابی است که این جریان‌ها در طول (محور) روتور جاری شده و در انتها در محیط دایره‌ای، مشابه تعداد قطب‌های استاتور، بسته می‌شوند.
دانسیته جریان سطح روتور ژنراتور، JR، در برهه زمانی ایجاد جریان مولفه منفی استاتور، از رابطه زیر، که توسط کارخانه‌های سازنده پیشنهاد شده است، قابل محاسبه است:
JR: دانسیته جریان سطح روتور بر حسب جریان موثر بر اینچ
NP: تعداد قطب
FAR: راکتانس آرمیچر بر حسب پریونیت
D4: قطر روتور
۲I: جریان مولفه منفی استاتور
همانطور که گفته شد ژنراتورها با دو نوع نامتفاوتی مواجه هستند یکی جریان‌های ناشی از اتصال کوتاه‌های نامتقارن خارجی مانند اتصال فاز به زمین، فاز به فاز و هر دو فاز با هم و زمین و دیگری جریان‌های بار نامتقارن.
در شرایط اتصالی نامتقارن خارجی (خارج از ژنراتور) جریان‌های نامتقارن زیاد بوده و زمان بسیار کوتاه است. در صورتی که برای جریان‌های بار نامتقارن، جریان‌های معمولاٌ کمتر از جریان بار نامی بوده و نامتقارنی خیلی کم و زمان بقای این پدیده، زیاد است بنابراین یک نوع اختلاف در حفاظت هر کدام از این شرایط وجود خواهد داشت.

تحلیل رفتار ژنراتور در قبال خطای نامتقارن (خارجی):
در بررسی مسائل گرم کردن گذرا، یک استاندارد عملی این است که از اثرات حرارت منتقل شده به طرف محیط خنک‌کننده صرفنظر شود و در زمان بسیار کوتاه وقوع خطا (تا پاک شدن آن) با اینکه مقداری حرارت به طرف گاز خنک‌کننده جاری می‌شود قابل اغماض فرض شده است.
اثرات هدایت حرارت از طریق قسمت‌های فلزی نقش مهمی را در این مساله بوجود می‌آورد. بعضی فلزات مانند آلومینیوم و مس می‌توانند مقادیر زیادی از حرارت را دورتر از نقاط گرم موضعی منتقل کنند در حالی که فولادهای غیر مغناطیسی مانند عایق‌های حرارتی عمل می‌کنند. بعنوان مثال در نظر بگیرید اثرات گذرا بر روی ترکیب‌های مختلفی از گوه‌های شیار سیم‌پیچی میراکننده، محاسبه‌ای را برای توزیع نامی جریان می‌توان انجام داد.
در یک شیار نمونه حاوی گوه‌های آلومینیومی و سیم‌پیچی میرا‌کننده مسی تقریباً‌کل جریان عبوری از یک گام شیار معین از گوه‌ها عبور خواهد کرد. البته باستثناء مسیرهای رابط بین گوه‌های مجاور، تجزیه و تحلیل انتقال حرارت گذرا نشان می‌دهد که بر اساس کل حجم گوه‌ها و سیم پیچ‌های میراکننده، حرارت تولید شده جذب می‌شود.
برعکس، با استفاده از گوه‌های فولادی (غیرمغناطیس) و یک سیم‌پیچ میراکننده مسی، جریان تقریباً‌ به طور مساوی بین گوه‌ها و سیم‌پیچ‌ میراکننده تقسیم می‌شود.
تجزیه و تحلیل انتقال حرارت در این مجموعه نشان می‌دهد که گوه‌های فولادی (غیرمغناطیسی) مانند عایق‌های حرارتی عمل کرده و این امر ناشی از پایین بودن ضریب هدایت حرارتی آنها است. بنابراین آنها تقریباً‌حرارتی را از سیم پیچ‌های میراکننده جذب نمی‌کنند. در نتیجه سیم پیچ‌های میراکننده با سرعت زیادی گرم می‌شوند که سرعت آن تقریباً برابر است با دو برابر سرعت در حالت استفاده از گوه‌های آلومینیومی و یک سیم‌پیچ میراکننده مسی. این وضعیت در انتهای گوه‌ها ، جایی که اغلب جریان باید به سیم‌پیچهای میراکننده منتقل شود حادتر و تولید حرارت در این مکان بیشتر است.
اثر عایقی فولادی (غیرمغناطیسی) مورد مهمی را در طراحی حلقه‌های نگهدارنده انتهایی و سیم‌پیچ‌های میراکننده تشکیل می‌دهد. نتایج آزمایش نشان داده است که افزایش درجه حرارت در محل مشترک حلقه‌های نگهدارنده انتهایی و سیم‌پیچ میراکننده، مقدار بالایی دارد.
با درک این حقیقت که درجه حرارت زیاد در این نقطه مربوط می‌شود به تولید حرارت و مقاومت اتصال و هر دو پدیده در سطح حلقه‌های نگهدارنده انتهایی، اتفاق می‌افتد، به یک نتیجه مهم می‌توان دست یافت. ابتدا مقایسه اطلاعات به ما اجازه می‌دهد که متوسط درجه حرارت حلقه‌های نگهدارنده انتهایی را محاسبه کنیم و بر اساس پدیده گذرا، متوسط درجه حرارت به مقدار خیلی زیاد از درجه حرارت سطح حلقه‌های نگهدارنده کمتر خواهد شد چون انبساط حلقه‌های نگهدارنده انتهایی فقط تابعی از درجه حرارت متوسط است. این محاسبات نشان می‌دهد که از دست رفتن سلامت حلقه‌های نگهدارنده انتهایی به عنوان یک عامل، بیشتر از محدودیت‌های دیگر ظاهر می‌شود که محدودیت‌های دیگر شامل اضافه ولتاژ و فساد تدریجی ماده تشکیل دهنده آن است.
یک عامل مهم دیگر که باید به اطلاعات جمع‌شده از طریق آزمایش اضافه شود عبارت است از اثر مولفه DC جریان استاتور در جاری شدن جریان با فرکانس‌ نامی روی سطح روتور نشان داده شده است که ثابت‌های زمانی چنین جریان‌هایی بسیار کوتاه است، اما مقادیر اولیه برای حالت جابجایی (آفست) کامل بسیار زیاد است. با اینکه ضریب ۲√ بیشتر برای کم کردن اثر مولفه با فرکانس نامی بوسیله حساب کردن ضریب نفوذ است.
استانداردهای جدید پیشنهادی لازم می داند که ژنراتور باید اثرات حرارتی خطاهای نامتعادل را در ترمینال‌های خود تحمل کند، این اثرات شامل مولفه‌های DC القاء شده نیز هستند.
بعلت پیچیدگی مسائل مربوط به انتقال حرارت، کارخانه‌های سازنده ژنراتور جهت پی‌بردن به اثرات ناشی از حرارت مولفه منفی مبادرت به آزمایش‌های گسترده‌ای کرده‌اند، برای هر یک از ماشین‌های آزمایش شده، سعی کرده‌اند که در طراحی، قدرت تحمل ژنراتورها را در برابر جریان‌های ناشی از مولفه منفی بهبود بخشند. عواملی مانند حلقه‌های اتصال کوتاه در انتهای روتورها، مواد مختلفی که در ساخت گوه‌های شیار بکار برده می‌شوند. تغییراتی در طراحی سیم پیچ‌های میراکننده در شیارهای سیم پیچ و حلقه‌های نگهدارنده انتهایی و اثرات میراکننده روی قطب مورد ارزیابی قرار گرفته است و هنگامی که بهبودهایی بدست می‌آید این روش‌هارا در طراحی بهینه ماشین منظور می‌دارند.
در شرایط اتصالی نامتقارن، گرم شدن کوتاه مدت ژنراتور مورد توجه است، زیرا در این حالت تلف گرمایی ناچیز بوده و گرمای ایجاد شده کلاً در ظرفیت حرارتی روتور ذخیره خواهد شد.

ظرفیت حرارتی ماشین:
با عبور جریان الکتریکی از هادیها مقداری حرارت در آنها بوجود می‌آید که این حرارت با مجذور جریان، مقدار مقاومت‌ هادی همچنین با زمان استمرار این جریان در هادی رابطه مستقیم دارد که از رابطه زیر بدست می‌آید:
بطور عادی در هنگام بهره‌برداری از ژنراتورها این حرارت بوجود می‌آید، البته با طراحیهای مناسبی که روی ژنراتورها بعمل می‌آید بوجود آمده برای حالت عادی کار ماشین را اپتیمم می‌کنند ولی متاسفانه شرایط در سیستم بوجود می‌آید که دامنه جریان عبوری از ماشین را به مراتب بالاتر از حد تحمل حرارتی ماشین برده که علاوه بر آنکه تلفات اضافی بوجود می‌آورد در برخی موارد باعث آسیب جدی ماشین می‌شود. یکی از این موارد بوجود آمدن جریان‌های مولفه منفی در سیستم است. تلفات اضافی بوجود آمده در روتور به مقدار جریان مولفه یا درصد نامتعادلی بستگی دارد و با .t22I متناسب است. این حاصل عبارت، ظرفیت حرارتی ماشین (روتور) نامیده شده که برای هر ماشین مقدار ثابتی است.
در معادله فوق (t)2i مولفه منفی جریان بصورت تابعی از زمان و K یک مقدار ثابت است که با ظرفیت حرارتی روتور ژنراتور متناسب بوده و برای ژنراتورهای مختلف دارای مقادیر متفاوتی است و بصورت یک معیار برای هر ژنراتور در نظر گرفته می‌شود.
T، در معادله فوق، مدت زمانی است که ژنراتور می‌تواند با بار نامتقارن بکار خود ادامه دهد بدون اینکه درجه حرارتش از مقدار مجاز فراتر رود و ۲I مولفه منفی جریان بر حسب پریونیت است و این رابطه فقط در بارهایی که درصد نامتعادلی زیاد باشد صادق است. بیان کردن جریان مولفه منفی بصورت تابعی از زمان (t)2i به سادگی مقدور نیست و بستگی به شرایط سیستم، محل‌های خطا و در مدار و یا خارج مدار بودن ولتاژ رگولاتور (AVR) دارد، در صورتی که ۲I ممکن است بصورت تقریبی بدست بیاید. مقدار جریان مولفه منفی معادل می‌تواند نزدیک به مقداری باشد که از معادله زیر بدست می‌آید:
در رابطه فوق ۲I جریان مولفه منفی گذرا و S2I جریان مولفه منفی تداوم یافته اتصالی است.
مقدار t2I جاری شده در ژنراتور را زمانی می‌توان بدست آورد که جهت محاسبه اتصال فاز به فاز خارجی (خارج از ژنراتور) از راکتانس گذرا برای تمام منابع استفاده شود. همچنین مقدار S2I جاری شده در ژنراتور را نیز زمانی می‌توان بدست آورد که جهت محاسبه اتصال فاز به فاز خارج از ژنراتور از راکتانس سنکرون برای تمام منابع قدرت استفاده شود (بارهای موازی نیز در نظر گرفته می‌شود).
هنگامی که ژنراتور مجهز به تنظیم کننده ولتاژ (AVR) باشد، در هنگام اتصالی خارجی، تحریک آن به سقف خودش می‌رسد. (وقت کافی برای این عمل وجود دارد) که در این صورت ۲I نزدیک خواهد بود به جریان مولفه منفی جاری شده برای یک اتصالی فاز به فاز خارجی که بر مبنای استفاده از راکتانس سنکرون برای تمام منابع قدرت، ولتاژ باس بی‌نهایت برابر با یک پریونیت و ولتاژ داخلی ژنراتور که از سقف تحریک و حذف کلیه بارها نتیجه شده، محاسبه می‌شود.
با در نظر نگرفتن منحنی‌های اشباع ژنراتور، ولتاژ داخل ژنراتور برای سقف تحریک ممکن است معادل با ۵/۳پریونیت در نظر گرفته شود البته این فرض قدری زیاد بوده بطوری که مقدار واقعی را می‌توان بین ۳ تا ۵/۳ پریونیت در نظر گرفت. با توجه به گذرا بودن t2I و تاخیری که در عمل رله بعلت دلایلی که بعداً ذکر می‌شود، وجود دارد، برای محاسبه k=t22I منظور از ۲I را می‌توان همان جریان S2I دانست (بعد از سپری شدن حالت گذرا t2I برابر با S2I می‌شود نتیجه خواهد شد
S2I = 2I).
مقدار نامی جریان ترتیبی منفی قابل تحمل در ژنراتورهای قطب برجسته که معمولاً در نیروگاههای آبی مورد استفاده قرار می‌گیرند عموماً بسیار بزرگتر از ژنراتورهای روتور استوانه‌ای است. بدیهی است این مقدار بستگی مستقیم به نوع سیستم تهویه ماشین‌ها دارد که در عین حال به راندمان سیم پیچ میدان وابسته خواهد شد. در این مورد استاندارد
ANSI C50-13 پیشنهادهایی داده است.
در شرایط اتصالی سیستم، گرم شدن کوتاه مدت ژنراتور مورد توجه قرار می‌گیرد در این مورد تلف گرمایی ناچیز بوده و گرمای ایجاد شده تماماً در ظرفیت حرارتی روتور ذخیره می‌شود.

تحلیل رفتار ژنراتور در قبال بار نامتقارن:
جریان‌های بار نامتقارن کمتر ازجریان بار نامی بوده و تولید گرمای آنها به جریان نامتعادلی بار بستگی دارد و لذا برای هر ژنراتور، یک مقدار نامی جریان بار نامتقارن با عنوان جریان مولفه منتفی پیوسته می‌توان نسبت داد، که در زمان طولانی ژنراتور می‌تواند آن را تحمل کند. حدوداً این مقدار ۵% تا ۱۵% مولفه مثبت جریان نامی ژنراتور می تواند باشد و با c2I نشان داده می‌شود.
این جریان مولفه منفی پیوسته (c2I) در ژنراتور ایجاد تلف گرمایی می‌کند. برای گرمای ایجاد شده در زمانی بیش از چندین ثانیه باید تلف گرمایی نیز در نظر گرفته شود از ترکیب مقادیر نامی گرمای ایجاد شده بطور پیوسته و در زمان کوتاه، مشخصه حرارتی کل را به صورت زیر نمایش می‌دهند:
که در آن R2I مقدار نامی جریان ترتیبی منفی بطور پیوسته برحسب پریونیت است.
قابل توجه است که برای روش‌های خنک‌کنندگی موثرتر در ژنراتور مقدار نامه کمتری از مولفه منفی را می‌توان به ژنراتور اعمال کرد، بطور مثال توربو ژنراتوری که با هوا خنک می‌شود C2I برابر با ۱۵% برای توربو ژنراتوری که بصورت موثرتری با هیدروژن خنک می‌شود C2I برابر با ۱۰% و برای ژنراتورهای بیشتر از MVA 800 که از سیستم خنک‌کن بسیار موثری از هیدروژن برخوردار است فقط ۵% است.

برای حفاظت ژنراتور در قبال خطرات ناشی از عدم تقارن بار یا خطاهای نامتقارن سیستم که موجب پدید آمدن جریان مولفه منفی می‌شود، از رله مولفه منفی استفاده می‌شود. این رله‌ها عموماٌ از نوع جریان زیاد هستند. بدیهی است آشکار کردن مولفه منفی جریان با بکار بردن فیلتر مولفه منفی صورت می‌گیرد که در حقیقت این قسمت از اهمیت ویژه‌ای برخوردار است لذا تاکنون سعی شده است فیلترهایی ساخته شود که علاوه بر دقت در امر آشکار ساختن جریان مولفه منفی از عبور جریان‌های مولفه ترتیبی مثبت و صفر جلوگیری بعمل آورد که با رشد تکنولوژی این فیلترها نیز تکامل یافته و به حد مطلوبی رسیده است و از نوع الکترومکانیکی به رله‌ها‌ی الکترومغناطیسی و الکترواستاتیکی که از روش‌های الکترونیکی در آنها استفاده شده است و در حال حاضر رله‌های میکروپروسسوری در طرح‌های نیروگاهی دست یافته‌اند.
از نظر الکتریکی این فیلترها، در دو نوع ولتاژی (فیلتر مولفه منفی ولتاژ) و جریانی (فیلتر مولفه منفی- جریان) ساخته شده‌اند برای فیلتر کردن مولفه منفی، مدارهای متعددی وجود دارد که بطور نمونه مدار مذکور در ادامه آورده می‌شود:

مدار اول فیلتر مولفه منفی:
توسط یک فیلتر، مقدار مولفه منفی حاصله از رله گذشته و باعث عملکرد آن می‌شود. مدار این فیلتر تشکیل شده است. از دو C.T (ترانسفورماتور جریان) که یکی از C.Tها بر روی فاز A نصب شده و مقاومت R راتغذیه می‌کند و C.T دیگر بر روی فاز C نصب شده و امپدانس Z که مقدار عددی آن برابر با مقاومت R و ضریب آن ۵/۰ است، را تغذیه می‌کند. در این حالت افت ولتاژ در شاخه شامل امپدانس Z از جریان همان شاخه به اندازه ۶۰ درجه جلو می‌افتد.
جهت بررسی ساده ‌برداری از جریان عبوری رله (ID) صرف‌نظر می‌شود اما در هنگام بررسی نقش رله در مدار، ID در نظر گرفته خواهد شد.
در جریان‌های مولفه مثبت، ولتاژهای فاز A و فاز C درخلاف جهت هم بوده و مجموعشان صفر می‌شود.
در جریان‌های مولفه منفی، بین نقاط X و Y ولتا VR+VZ بوجود می‌آید و این امر نشان می‌دهد که رله نصب شده بین نقاط Y,X فقط به مولفه منفی پاسخ می‌گوید.

فیلتر الکترونیکی مولفه منفی جریان (و رله مذکور)
در این رله ابتدا هرگونه جریان ترتیبی صفر توسط ترانسفورماتورهای کمکی از گروه ستاره- مثلث،‌که درخود رله قرار دارد، حذف می‌شوند. این تراسنفورماتورها در سیم‌پیچ اولیه خود دارای متغیری بوده تا محدوده تنظیمی مطابق با مقادیر نامی جریان ترتیبی منفی ژنراتور معمولی ایجاد شود.
جریان‌های ثانویه ترانسفورماتور کمکی به شبکه‌ای تغذیه شده که در این حالت شامل امپدانس‌های خازنی و مقاومتی بوده و تغییر فاز ۶۰ درجه‌ای یکی از بردارهای جریان در آن ایجاد شود، با اتصال شبکه ترتیبی با مدار شکل‌دهنده‌ای که شامل مقاومت‌ها، دیودهای زنر بوده و به صورت پتانسیومتر غیرخطی عمل کرده و طوری طراحی گشته که رابطه قانونی مجذوری را ایجاد کند و یک خروجی متناسب با مجذورجریان ترتیبی منفی بدست آید.
این روند با انتگرال‌گیری و مدارهای حساس به دامنه دنبال شده و در مرحله آخر سیگنال ایجاد شده یک رله آرمیچری لولایی را بکار انداخته تا اتصالات مربوطه فرمان قطع را بوجود آورند.
در رله میکروپروسسوری نیز با طراحی مدارات مربوطه و پروسسوری‌های مورد نیاز، با فیلتر کردن موله منفی، به رابطه قانون مجذوری تحقق می‌بخشد.

حفاظت مولفه منفی ژنراتور و مشخصه آن:
رله مولفه منفی در قبال شرایط عدم تعادل خارجی (بار یا اتصال کوتاه) که امکان آسیب به ماشین الکتریکی باشد، از ژنراتور حفاظت می‌کند. جهت تحقق این امر،‌خروجی فیلتر مولفه منفی را می‌توان به یک رله جریان زیاد با مشخصه زمانی معکوس اعمال کرد که مشخصه زمان جریان آن به صورت t× ۲۲K=I باشد در این حالت می‌توان مشخصه رله را طوری تنظیم کرد که با مشخصه حرارتی هر ماشینی بخوبی هماهنگ شود.
چهت تنظیم رله‌های مولفه منفی با توجه به مشخصات حرارتی ژنراتور و مشخصات رله، روش‌های مختلفی ارایه شده است که این روش‌ها توسط کارخانه سازنده، همراه رله‌ها ارایه می‌شوند.
جهت تنظیم رله‌های مولفه منفی با توجه به مشخصات حرارتی ژنراتور و مشخصات رله، روش‌های مختلفی ارایه شده است که این روش‌ها توسط کارخنه سازنده،‌همراه رله‌ها ارایه می‌شوند.
مشخصه رله و ظرفیت حرارتی ماشین الکتریکی مشخص شده است. در این شکل،‌مشخصه رله، مشخصه حرارتی ژنراتور را در یک پریونیت جریان مولفه منفی قطع کرده است. ولی در مقادیر زیاد جریان مولفه منفی، مشخصه رله اساساً بصورت پارالل و یک مقدار جزیی کمتر از مشخصه ژنراتور در نظر گرفته شده است. این روش یک حاشیه اطمینان مناسب را بین دو مشخصه بوجود آورده است.
مشخصه رله برای دو ژنراتور با Kهای مجاز ۳۰ و۹۰ نشان داده شده است که تنظیم صفحه زمان‌نما (TIME DIAL = T.D.) برای این ثابت‌ها (ظرفیت حرارتی ماشین)، به ترتیب ۴ و ۱۱ است. حفاظت مشابه برای دیگر ماشین‌های الکتریکی با ثابت‌های مختلف بوسیله تنظیم T.D. بدست می‌آید.
از آنجایی که منبع ناتعادلی در سیستم (قدرت) قرارداشته و بر تمام ژنراتورهای نزدیک محل ناتعادلی تاثیر می‌گذارد قبل از برطرف شدن چنین شرایطی، تا مادامیکه ژنراتور در معرض خطر آسیب‌دیدگی قرار نگرفته باشد، نباید آنرا از شبکه جدا کرد. بنابراین حفاظت ناتعادلی بار باید دارای مشخصه تاخیر حتی‌الامکان نزدیک به مشخصه حرارتی ماشین باشد تا حتی‌المقدور قبل از لزوم خاموشی کامل، به پرسنل بهره‌برداری فرصت داده شود تا محل عیب را پیدا کرده و در صدد رفع آن برآیند. اگر در ابتدای ناتعادلی بار افراد بهره‌بردار با اعلام خبر مطلع نشوند جهت برطرف کردن این عدم تعادل از چنین زمان تاخیر متاسفانه نمی‌توان سود جست.
بنابراین حفاظت مورد بحث باید دارای جنبه اعلام خبری (هشدار) بوده که در تنظیمی برابر اندکی کوچکتر از عنصر فرمان قطع عمل کند و برای اینکه از اعلام خبر غیرضروری برای آن دسته از اتصالی‌های سیستم که به روش معمول سریعاً برطرف می‌شوند، جلوگیری بعمل آید یک تاخیر زمان نیز باید برای آن در نظر گرفته شود.
بطور معمول، حفاظت جداگانه‌ای بعنوان پشتیبان رله جریان زیاد (زمانی) مولفه نفی ژنراتور بکار نمی‌رود چون در برخی کاربردها، این رله خودش وظیفه پشتیبانی را بعهده دارد. همچنین رله‌های اتصال زمین و جریان زیاد ژنراتور و سیستم انتقال و رله‌گذاری سیستم قدرت، ‌درجاتی از حفاظت پشتیبان جریان نامتعادل ژنراتور را فراهم می‌آورد. خطاهای فاز به فاز در ترمینال ژنراتور و یا در سیم‌پیچ‌های استاتور در داخل ژنراتور، توسط باز شدن کلید اصلی ژنراتور نمی‌تواند پاک شود. این خطا توسط حفاظت جریان گردنده تشخیص داده می‌شود و رله مولفه نفی به عنوان پشتیبان عمل می‌کند.

منطق قطع (تریپ) ژنراتور توسط رله مولفه منفی:
رله مولفه منفی، فرمان قطع به کلید اصلی ژنراتور را صادر می‌کند. اگر دستگاههای کمکی ماشین الکتریکی اجازه دهند،‌این نوع قطع کردن ارجحیت دارد که تحت این شرایط کارها انجام گیرند. با استفاده از این روش‌ می‌توان سنکرون کردن مجدد واحد را بعد از رفع شرایط عدم تعادل مجدداً‌برقرار ساخت.
اگر دستگاههای کمکی ماشین الکتریکی اجازه ندهند که ماشین با نحوه قطع فوق عمل کند در این صورت رله مولفه منفی باید محرک اولیه ماشین الکتریکی (توربین) را نیز همراه با تحریک ژنراتور قطع کند.

نحوه تنظیم رله مولفه منفی ژنراتور:
مشخصه رله با T.Dهای مختلف،‌با توجه به زمان و مقدار جریان مولفه منفی بر حسب پریونیت نشان داده شده است.
سازنده رله برای حساسیت بهتر، برای مقادیر ثابت K (ظرفیت حرارتی ژنراتور) بین ۳۰ تا ۹۰،‌جهت تنظیم رله از جریان بار کامل ماشین الکتریکی استفاده کرده و برای Kهای پایین‌تر از ۲۵، از تنظیم تپ (TAP) رله معادل با جریان بار کامل استفاده کرده است،
به بیانی دیگر، این سازنده جهت ژنراتورهای با قدرت تولیدی بالا (که بصورت موثرتری خنک می‌شوند) تنظیم جریان بار کامل را مورد نظر داشته و برای ژنراتورهای با قدرت تولیدی کمتر، تنظیم جریان بار کامل را توصیه می‌کند. با توجه منحنی بار کامل و بار کامل، تنظیم صفحه زمان‌نما (TIME DIAL) مطلوب بدست می‌آید.
با بیان دو مثال کاربرد منحنی‌های فوق و نحوه تنظیم رله مولفه نفی در بار کامل و بار کامل مشخص می‌شود:
در یک توربو ژنراتور MVA35، KV11، دارای ترانس جریان مقدار
۳۰ = t22I است. در این حالت جریان مولفه نفی بر حسب پریونیت جریان استاتور در KVA نامی بیان می‌شود.
که می‌توان جریان ۳ آمپر در نظر گرفت (که معادل یک پریونیت است).
با توجه به ۳۰ = t22I مقدار (TIME DIAL)T.D برابر با ۴ انتخاب می‌شود، در نظر داشتن ۴ = T.D. مشاهده می‌شود که زمان عملکرد رله برای یک جریان مولفه منفی به مقدار ۵/۴ آمپر (۵/۱ پریونیت) برابر با ۱۱ ثانیه است.
در صورتی که زمان عملکرد رله برای یک جریان مولفه منفی ۹ آمپری (۳ پریونیت)، برابر با ۵/۲ ثانیه خواهد شد.

مثال دو- با استفاده از جریان بار کامل:
یک توربوژنراتور MVA760، KV20 با ترانسفورماتور جریان دارای
۱۰= t22I است، حهت تنظیم رله مولفه منفی آن به قرار زیر عمل می‌شود:
ابتدا با توجه به منحنی پایینی (منحنی بار کامل) مقدار T.D. برای ۱۰= t22I برابر با ۵/۲ بدست می‌آید.
حال می‌توان رله را برای ۲۹/۳ آمپر یا مقداری کمتر از آن تنظیم کرد (با توجه به اینکه بر روی رله مولفه منفی چه تنظیمی نزدیک به ۲۹/۳ آمپر است)، فرض می‌شود رله بر روی ۲۵/۳ آمپر تنظیم شود. با توجه به منحنی مشخصه رله که تنظیم هر پریونیت آن معادل با بار کامل در نظر گرفته شده است: در ۲۵/۳ آمپر، زمان عملکرد رله با توجه به ۵/۲=T.D. برابر با ۱۶ ثانیه بدست می‌آید.
در صورتی که زمان عملکرد برای جریانی به اندازه ۳ برابر جریان تنظیم شده (۷۵/۹=۲۵/۳×۳) برابر با ۵/۱ ثانیه بدست خواهد شامد.

تنظیم بخش هشدار رله مولفه منفی ژنراتور:
برخی رله‌ها دارای واحدهای حساس هشدار (آلارم) هستند که هشدار لازم به بهره‌بردار سیستم قدرت جهت افزایش عدم تقارن بار بدهد تا تمهیدات لازم جهت تعادل بار بنماید. واحد هشدار رله‌ها دارای مقدار فعال شدن (پیک آب) جریان مولفه منفی مابین ۰۳/۰ تا ۲/۰ پریونیت است.
با توجه به استاندارد مجاز مولفه منفی در هر شبکه، مقدار پیک آب بخش هشدار رله را می‌توان تعیین کرد. در برخی از انواع رله‌های استاتیکی مولفه منفی، وسیله اندازه‌گیری جهت تشخیص سطح مولفه منفی ماشین الکتریکی تعبیه شده است.

 

ماهنامه صنعت برق

ثبت دیدگاه

برو بالا
سوالی دارید؟ چت با Whatsapp